∫2x−1(x−1)(x+2)(x−3)dx
Let I=∫2x−1(x−1)(x+2)(x−3)dxLet 2x−1(x−1)(x+2)(x−3)=A(x−1)+B(x+2)+C(x−3)⇒2x−1=A(x+2)(x−3)+B(x−1)(x−3)+C(x−1)(x+2)Put x=3,then6−1=C(3−1)(3+2)⇒5=10C⇒C=12Again,put x=1,then2−1=A(1+2)(1−3)⇒1=−6A⇒A=−16Now,put x=−2,then−4−1=B(−2−1)(−2−3)⇒−5=15 B⇒B=−13∴I=−16∫1x−1dx−13∫1x+2dx+12∫1x−3dx=−16log|(x−1)|−13|(x+2)|+12log|(x−3)|+C