∫3x−1√x2+9dx=
I=∫3x−1√x2+9dxI=∫3x√x2+9dx−∫1√x2+9dxI=I1−I2Now, I1=∫3x√x2+9Put x2+9=t2⇒2xdx=2tdt⇒ xdx=tdt∴ I1=3∫ttdt=3∫dt=3t+C1=3√x2+9+C1and I2=∫1√x2+9dx=∫1√x2+(3)2dx=log|x+√x2+9|+C2∴ I=3√x2+9+C1−log|x+√x2+9|−C2=3√x2+9−log|x+√x2+9|+C, where C=C1−C2
Integrate the function. ∫√1+x29dx