a=∫3x−2(x+1)2(x+3)dx
Using partial fraction
=∫(−114(x+3)+114(x+1)−52(x+1)2)dx
=−114∫1x+3dx+114∫dx+1dx=S2∫1(x+1)2dx
Sub x+3=4 Sub x+1=5, ds=dx sub (x+1)2=p2
=−114log(4)+114log(s)−s2∫1p2dp
=52p+11log(5)4−11log(4)4+ constant
=14(−11log(a)+10x+1+11log(x+1))+ constant
Ans: 14(10x+1+11log(x+1)−11log(x+3))+ constant.