wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cosx+2sinx7sinx5cosxdx=ax+bln7sinx5cosx+cthena+bis.

Open in App
Solution

We have,

cosx+2sinx7sinx5cosxdx=ax+bln|7sinx5cosx|+C

Solve it:-

cosx+2sinx7sinx5cosxdx

We know that,

Numerator = A(Denominator)+B(DerivativeofDenominator)……. (1)

Where A and B are two constants.

Now, Differentiation denominator with respect to x and we get

Let,

7sinx5cosx=t

(7cosx+5sinx)=dtdx

(7cosx+5sinx)dx=dt

Then,

By equation (1) and we get,

cosx+2sinx=A(7sinx5cosx)+B(7cosx+5sinx)

=7Asinx5Acosx+7Bcosx+5Bsinx

=7Asinx+5Bsinx5Acosx+7Bcosx

cosx+2sinx=(7A+5B)sinx+(5A+7B)cosx

Comparing both side and we get,

7A+5B=1.......(2)

5A+7B=2.......(3)

Solving equation (2) and (3) to, and we get,

A=374,B=1974

Put the value of A and B in equation (1) and we get

Numerator = -374(Denominator)+1974(DerivativeofDenominator)

cosx+2sinx=374(7sinx5cosx)+1974(7cosx+5sinx)

Then, According to given question,

cosx+2sinx7sinx5cosxdx=374(7sinx5cosx)+1974(7cosx+5sinx)7sinx5cosxdx

=374(7sinx5cosx)7sinx5cosxdx+1974(7cosx+5sinx)7sinx5cosxdx

=374(7sinx5cosx)7sinx5cosxdx+1974(7cosx+5sinx)7sinx5cosxdx

=3741dx+1974dtt

Onintegratingandweget,

=374x+1974lnt

=374x+1974ln(7sinx5cosx)+C

cosx+2sinx7sinx5cosxdx=374x+1974ln(7sinx5cosx)+C.......(4)

Given that,

cosx+2sinx7sinx5cosxdx=ax+bln(7sinx5cosx)+C.......(5)

On comparing equation (4) and (5) to and we get,

a=374,b=1974

Then, a+b=374+1974

a+b=1674

a+b=837

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation Between Differentiability and Continuity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon