We have,
∫cosx+2sinx7sinx−5cosxdx=ax+bln|7sinx−5cosx|+C
Solve it:-
∫cosx+2sinx7sinx−5cosxdx
We know that,
Numerator = A(Denominator)+B(DerivativeofDenominator)……. (1)
Where A and B are two constants.
Now, Differentiation denominator with respect to x and we get
Let,
7sinx−5cosx=t
(7cosx+5sinx)=dtdx
(7cosx+5sinx)dx=dt
Then,
By equation (1) and we get,
cosx+2sinx=A(7sinx−5cosx)+B(7cosx+5sinx)
=7Asinx−5Acosx+7Bcosx+5Bsinx
=7Asinx+5Bsinx−5Acosx+7Bcosx
cosx+2sinx=(7A+5B)sinx+(−5A+7B)cosx
Comparing both side and we get,
7A+5B=1.......(2)
−5A+7B=2.......(3)
Solving equation (2) and (3) to, and we get,
A=−374,B=1974
Put the value of A and B in equation (1) and we get
Numerator = -374(Denominator)+1974(DerivativeofDenominator)
cosx+2sinx=−374(7sinx−5cosx)+1974(7cosx+5sinx)
Then, According to given question,
∫cosx+2sinx7sinx−5cosxdx=∫−374(7sinx−5cosx)+1974(7cosx+5sinx)7sinx−5cosxdx
=∫−374(7sinx−5cosx)7sinx−5cosxdx+1974(7cosx+5sinx)7sinx−5cosxdx
=−374∫(7sinx−5cosx)7sinx−5cosxdx+1974∫(7cosx+5sinx)7sinx−5cosxdx
=−374∫1dx+1974∫dtt
Onintegratingandweget,
=−374x+1974lnt
=−374x+1974ln(7sinx−5cosx)+C
∫cosx+2sinx7sinx−5cosxdx=−374x+1974ln(7sinx−5cosx)+C.......(4)
Given that,
∫cosx+2sinx7sinx−5cosxdx=ax+bln(7sinx−5cosx)+C.......(5)
On comparing equation (4) and (5) to and we get,
a=−374,b=1974
Then, a+b=−374+1974
a+b=1674
a+b=837
Hence, this is the answer.