∫cosx−cos2x1−cosxdx=
∫cosx−cos2x1−cosxdx=∫2sin3x2.sinx21−1+2sin2x2dx=2∫sin3x2.sinx22sin2x2dx=∫sin3x2sinx2dx=∫3sinx2−4sin3x2sinx2dx [∴sin3x=3sinx−4sin3x]=3∫dx−4∫sin2x2dx=3∫dx−4∫1−cosx2dx=3∫dx−2∫dx+2∫cosxdx=∫dx+2∫cosxdx=x+2sinx+C=2sinx+x+C