The correct option is A 16log(1−cosx)+12log(1+cosx)−23log(1+2cosx)
I=∫dxsinx(1+2cosx)=∫sinxdxsin2x(1+2cosx)=∫sinxdx(1−cosx)(1+cosx)(1+2cosx)
Now differential coefficient of cos x is -sin x which is given in numerator and hence we make the substitution cosx=t⇒−sinxdx=dt
∴I=−∫dt(1−t)(1+t)(1+2t)
We split the integrand into partial fractions
∴I=−∫[16(1−t)−12(1+t)+43(1+2t)]dt etc.