∫dxx2√16−x2 has the value equal to
−14tan−1(sec(x4))+c
14tan−1(sec(x4))+c
−√16−x216x+c
√16+x216x+c
I=∫1x2√16−x2dx
Put x=1t;
dx=−1t2dt∴I=∫−1t2dt1t2√16−1t2=∫−t dt√16t2−1
Let 16t2−1=u2;32t dt=2u du;
tdt=u16du∴I=−116∫uduu=−u16+c=−√16−x216x+C
∫etan−1x(1+x+x2).d(cot−1x) is equal to
equals
A. x tan−1 (x + 1) + C
B. tan− 1 (x + 1) + C
C. (x + 1) tan−1 x + C
D. tan−1 x + C