We have,
∫dxx12+x13
LCM of 2and3 =6
Let,
x=t6
dxdt=6t5
dx=6t5dt
∫6t5dtt3+t2
=∫6t5dtt2(t+1)
=∫6t3dt(t+1)
=6∫t3+1−1dt(t+1)
=6∫t3+1(t+1)dt−6∫1dt(t+1)
=6∫(t+1)(t2+1−t)(t+1)dt−6∫1dt(t+1)
=6∫(t2+1−t)dt−6∫1dt(t+1)
=6∫t2dt+6∫dt−6∫tdt−6∫1dt(t+1)
=6[t33]+6t−6[t22]−6log(t+1)+C
Put t=6√x
=6√x3+6x16−6x13−6log⎛⎜⎝x16+1⎞⎟⎠+C
Hence, this is the answer.