∫dxx(log x−2)(log x−3)=f(x)+c then f(x)=
1xlog|log x−3||log x−2|
log|log x−3||log x−2|
2log|log x−3||log x−2|
log|(log x−3)(log x−2)|
Put log x=t ⇒I=∫1(t−2)(t−3)dt I=log∣∣log x−3log x−2∣∣+c