No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
etan−1x.(tan−1x)22+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
etan−1x.(sec−1(√1+x2))2+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
etan−1x.(cos−1(√1+x2))2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cetan−1x.(sec−1(√1+x2))2+C
note that sec−1√1+x2=tan−1x;cos−1(1−x21+x2)=2tan−1x for x > 0 I=∫etan−1x1+x2((tan−1x)2+2tan−1x)dx
Put tan−1x=t =∫et(t2+2t)dt=et.t2=etan−1x((tan−1x)2)+C