We have,
∫(xsec2x+tanx)(xtanx+1)dx=−xxtanx+1f(x)+C.......(1)
find the value of f(x).
Solve by L.H.S. and we get
Let,
xtanx+1=t
(xsec2xdx+tanx)dx=dt
=∫dtt
=logt+C
=log(xtanx+1)+C
Now put the value of equation (1) and we get,
⇒log(xtanx+1)+C=−xxtanx+1f(x)+C
⇒log(xtanx+1)=−xxtanx+1f(x)
⇒f(x)=−(xtanx+1)log(xtanx+1)x
⇒f(x)=−log(xtanx+1)(xtanx+1)x
This is the value of f(x)
Hence, this is the answer.