∫π4−π4ex.sec2xdxe2x−1is equal to
0
2
e
2e
Let I=∫π4−π4exsec2xdxe2x−1 If f(x)=exsec2xe2x−1If f(x)=exsec2xe2x−1∴f(−x)=e−xsec2−xe−2x−1=exsec2x1−e2x=−exsec2xe2x−1=−f(x)∴I=0 ( f(x) is odd function)