wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π4π4log(sin x+cos x)dx

Open in App
Solution

Let I=π4π4log(sin x+cos x)dx ...(i)

I=π4π4log{sin(π4π4x)+cos(π4π4)}dx =π4π4log{sin(x)+cos(x)}dxand I=π4π4log(cos xsin x)dx ...(ii)

From Eqs. (i) and (ii),

2I=π4π4log cos 2x dx2I=π4π4log cos 2x dx ...(iii) [ aaf(x)dx=2a0f(x),if f(x)=f(x)]Put 2x=t dx=dt2As x 0,then t 0and x π4,then tπ22I=12π20log cos t dt ...(iv)2I=12π20log cos (π2t) dt [ a0f(x)dx=a0f(ax)dx] 2I=π40log sin t dx ...(v)

On adding Eqs. (iv) and (v) , we get

4I=12π20log sin t cos t dt 4I=12π20logsin 2t2dt 4I=12π20log sin 2x dx12π20log 2 dx 4I=12π20log sin (π22x)dxlog 2.π4 4I=12π20log cos 2x dxπ4log 2 4I=12π20log cos 2x dxπ4log 2 [ 2a0f(x)dx=2a0f(x)dx] 4I=2Iπ4log 2 [from Eq.(iii)] I=π8log 2=π8log (12)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon