We have,
∫π6−π6sinx+cosx√sin2xdx
=∫π6−π6sinx+cosx√1−1+sin2xdx
=∫π6−π6sinx+cosx√1−(sinx−cosx)2dx
=∫π6−π6ddx(sinx−cosx)√1−(sinx−cosx)2dx∴1√1−x2dx=sin−1x
=[√2sin−1(sinx−cosx)]−π6π6
=[√2sin−1(sin(−π6)−cos(−π6))]−[√2sin−1(sin(π6)−cos(π6))]
=[√2sin−1(−sin(π6)−cos(π6))]−[√2sin−1(sin(π6)−cos(π6))]
=[√2sin−1(−12−√32)]−[√2sin−1(12−√32)]
=[√2sin−1(−1−√32)]−[√2sin−1(1−√32)]
=√2[sin−1(−1−√32)]−[sin−1(1−√32)]
Hence, this is the answer.