wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π6π6sinx+cosxsin2xdx

Open in App
Solution

We have,

π6π6sinx+cosxsin2xdx

=π6π6sinx+cosx11+sin2xdx

=π6π6sinx+cosx1(sinxcosx)2dx

=π6π6ddx(sinxcosx)1(sinxcosx)2dx11x2dx=sin1x

=[2sin1(sinxcosx)]π6π6

=[2sin1(sin(π6)cos(π6))][2sin1(sin(π6)cos(π6))]

=[2sin1(sin(π6)cos(π6))][2sin1(sin(π6)cos(π6))]

=[2sin1(1232)][2sin1(1232)]

=[2sin1(132)][2sin1(132)]

=2[sin1(132)][sin1(132)]

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon