∫secxdx√sin(2x+A)+sinA(sinC+Sin=2sin(+)2cos(−)2)
=secxdx√2sin(x+A)cosxA=a For simplicity
=1 dx√2cosx√cosx√sin(x+a)=1 dx√2cosx√cosx√sinxcosa+cosxsina
=dx√2cosx√cosx√cosx(sinxcosacosx)+cosxsinacosx=dx√2cosx√cosx√cosx√tanxcosa+sina=dx√2cos2x√tanxcosa+sina=dx√2cos2x√tanxcosa+sina=sec2x dx√2√tanxcosa+sina
Let tan x cos a +sin a =t
∴dtdx=sec2 cos a (a is constant)
⇒sec2xdx=dtcosa=dt sec a.
∴sec2xdx√2√tanx coss+sina=seca dt√2√t=seca√2∫t−1/2dt=seca√2t−1/2+1(−12+1)+C=seca√22√t+C=√2seca√t+C=√2seca√tanx cos A+sin A+C