∫(sinθcosθ−sinθ)dθ=(12)∫(sinθ−cosθ+sinθ+cosθcosθ−sinθ)dθ=(12)∫−1dx+(12)∫(sinθ+cosθcosθ−sinθ)dθletcosθ−sinθ=t(−sinθ−cosθ)dθ=dt∴I=(12)(−x)+(12)∫(dθt)=(−x2)−(12)log|t|+c=(−x2)−(12)log|cosθ−sinθ|+c