wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x2+1[log(x2+1)2 log x]x4dx

Open in App
Solution

Let I=x2+1[log(x2+1)2 log x]x4dx=x2+1x4[log(x2+1)log x2]dx=x2+1x4[log(1+1x2)]dx=1x3x2+1x2[log(1+1x2)]dxPut x2+1x2=t 1+1x2=t 2x3dx=dtdx=x32dt I=t log t.1x3(x3dt2)=12(t)1/2log t dt

On integrating by parts, we get

I=12[log tt12dt{(ddtlog t)t12dt}dt] =12[log t.t32321t.t3232dt]=12[23log t.t3223t12dt]=12×23[log t.t32t12dt]=13[log t.t32t3232]+C=13t32[log t23]+C=13(1+1x2)32[log (x2+1x2)23]+C


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon