∫√x2+1[log(x2+1)−2 log x]x4dx
Let I=∫√x2+1[log(x2+1)−2 log x]x4dx=∫√x2+1x4[log(x2+1)−log x2]dx=∫√x2+1x4[log(1+1x2)]dx=∫1x3√x2+1x2[log(1+1x2)]dxPut x2+1x2=t⇒ 1+1x2=t⇒ −2x3dx=dt⇒dx=−x32dt∴ I=∫√t log t.1x3(−x3dt2)=−12∫(t)1/2log t dt
On integrating by parts, we get
I=−12[log t∫t12dt−∫{(ddtlog t)∫t12dt}dt] =−12[log t.t3232−∫1t.t3232dt]=−12[23log t.t32−23∫t12dt]=−12×23[log t.t32−∫t12dt]=−13[log t.t32−t3232]+C=−13t32[log t−23]+C=−13(1+1x2)32[log (x2+1x2)−23]+C