∫√x√a3−x3dx=
Let I=∫√x√a3−x3dx=∫√x√(a3/2)2−(x3/2)2Put x3/2=t⇒32x1/2dx=dt∴I=23∫dt√(a3/2)2−t2=23sin−1ta3/2+C=23sin−1x3/2a3/2+C=23sin−1√x3a3+C