∫x2−1 dxx√x4+4x3−6x2+4x+1 equals
ln∣∣∣x+1x+2+√(x+1x+2)2−12∣∣∣+C
I=∫x2−1 dxx2√x2+4x−6+4x+1x2=∫(1−1x2)dx√(x2+1x2)+4(x+1x)−6
=∫x2−1 dx√(x+1x)2+4(x+1x)−8
Put (x+1x)=t, we get (1−1x2)dx=dt
∴I=∫dt√t2+4t−8=∫dt√(t+2)2−(√12)2
=ln∣∣∣(t+2)+√(t+2)2−(√12)2∣∣∣+c
=ln∣∣∣x+1x+2+√(x+1x+2)2−12∣∣∣+c