The correct option is B 14ℓn(ℓnx−xℓnx+x)−12tan−1(ℓnxx)+c
I=∫x2(1−ℓnx)dx(ℓn4x−x4)=x2(1−ℓnx)dxx4((ℓnxx)4)−1=∫(1−ℓnx)dxx2((ℓnxx)4)−1Put ℓnxx=t→(1−ℓnxx2)dx=dtI=∫dt(t4−1)=∫dt(t2+1)(t2−1)=12∫(t2+1)−(t2−1)dt(t2+1)(t2−1)I=12∫dtt2−1−12∫dtt2+1=12(12ℓn∫t−1t+1)−tan−1t=14ℓn(ℓnx−xℓnx+x)−12tan−1(ℓnxx)+c