The correct option is A x√9−x2−sin−1x3+c
Put x=3 sin θ⇒dx=3 cos θ dθ, therefore
∫x2(9−x2)3/2dx=∫(9 sin2 θ)(3 cos θ)(9−9 sin2 θ)3/2.dθ
=∫27 sin2θ cos θ27 cos3θdθ=∫tan2θ dθ=∫(sec2θ−1)dθ
=tan θ−θ+c=tan{sin−1(x3)}−sin−1(x3)+c=tan tan−1⎛⎜
⎜
⎜⎝(x3)√1−(x29)⎞⎟
⎟
⎟⎠−sin−1(x3)+c=x√9−x2−sin−1(x3)+c