I=∫x2√x−8dx=∫(x2−64√x−8+64√x−8)dx
=∫(√x−8)(x+8)dx+64×2√x−8
put x = 8sec2θ⇒tanθ=√x−8√8
⇒dx=16sec2θtanθdθ
=∫√8tanθ√8(sec2θ+1)×16sec2θtanθdθ+128√x−8
put tanθ=t
secθdθ=dt
∫128√8t2(2+t2)+dt+128√x−8
∫128√8(t4+2t2)dt+128√x−8
128√8(t55+2t33)+128√x−8
=128√8(tanθ55+2tan3θ3)+128√x−8
I=128√8[(√x−8√8)5×15+23(√x−8√8)3]+128√x−8