∫x2+x+1(x+1)2(x+2)dx.
∫x2+x+1(x+1)2(x+2)dxThe integrand x2+x+1(x+1)2(x+2)is a proper rational function.∴ x2+x+1(x+1)2(x+2)=Ax+1+B(x+1)2+C(x+2) ....(i)⇒ x2+x+1=A(x+1)(x+2)+B(x+2)+C(x+1)2⇒ x2+x+1=A(x2+3x+2)+B(x+2)+c(x2+2x+1)⇒ x2+x+1=(A+C)x2+(3A+B+2C)x+(2A+2B+C)
On comparing the coefficients of like powers on both sides, we get
A + C = 1, 3A + B + 2C = 1 and 2A + 2B + C = 1
On solving these equations, we get
A = -2, B = 1 and C = 3
From Eq.(i),we get x2+x+1(x+1)2(x+2)=−2x+1+1(x+1)2+3(x+2)∴ x2+x+1(x+1)2(x+2)dx=−2∫dxx+1=∫dx(x+1)2+3∫dx(x+2) =−2 log|x+1|−1(x+1)+3 log |x+2|+C