∫x2x4+x2+1dx=∫1x4x2+x2x2+1x2dx=∫1x2+1x2+1dx
=12∫2x2+1x2+1dx=12∫(1−1x2)+(1+1x2)(x2+1x2+1)dx
=12⎡⎢
⎢
⎢
⎢⎣∫(1−1x2)dxx2+1x2+1+∫(1+1x2)dxx2+1x2+1⎤⎥
⎥
⎥
⎥⎦
∫(1−1x2)dxx2+1x2+1
Take x+1x=t
⇒t2−1=x2+1x2+1
(1−1x2)dx=dt
=∫dtt2−1=12(1)ln∣∣∣t−1t+1∣∣∣+c=12ln∣∣
∣
∣∣x+1x−1x+1x+1∣∣
∣
∣∣+c
=12ln∣∣∣x2−x+1x2+x+1∣∣∣+c
∫(1+1x2)dxx2+1x2+1 take x−1x=u ⇒u2=x2+1x2−2
(1+1x2)dx=du ⇒u2+3=x2+1x2+1
=∫duu2+3=∫duu2+(√3)2=1√3tan−1(u√3)+c
=1√3tan−1⎛⎜
⎜
⎜⎝x−1x√3⎞⎟
⎟
⎟⎠+c
=1√3tan−1(x2−1√3x)+c
∫x2x4+x2+1dx=12ln∣∣∣x2−x+1x2+x+1∣∣∣+1√3tan−1(x2−1√3x)+c.