wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x2x4+x2+1=dx

Open in App
Solution

x2x4+x2+1dx=1x4x2+x2x2+1x2dx=1x2+1x2+1dx
=122x2+1x2+1dx=12(11x2)+(1+1x2)(x2+1x2+1)dx
=12⎢ ⎢ ⎢ ⎢(11x2)dxx2+1x2+1+(1+1x2)dxx2+1x2+1⎥ ⎥ ⎥ ⎥
(11x2)dxx2+1x2+1
Take x+1x=t
t21=x2+1x2+1
(11x2)dx=dt
=dtt21=12(1)lnt1t+1+c=12ln∣ ∣ ∣x+1x1x+1x+1∣ ∣ ∣+c
=12lnx2x+1x2+x+1+c
(1+1x2)dxx2+1x2+1 take x1x=u u2=x2+1x22
(1+1x2)dx=du u2+3=x2+1x2+1
=duu2+3=duu2+(3)2=13tan1(u3)+c
=13tan1⎜ ⎜ ⎜x1x3⎟ ⎟ ⎟+c
=13tan1(x213x)+c
x2x4+x2+1dx=12lnx2x+1x2+x+1+13tan1(x213x)+c.

1195545_1196059_ans_3457c8437a5343f59838fbc607db8f72.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Combinations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon