∫x2x4−x2−12dx
Let I =∫x2x4−4x2+3x2−12dx=∫x2dxx2(x2−4)+3(x2−4)=∫x2dx(x2−4)(x2+3)Now,x2(x2−4)(x2+3) [let x2=t]⇒t(t−4)(t+3)=At−4+Bt+3⇒t=A(t+3)+B(t−4)On comparing the coefficient of t on both sides,we getA+B=1⇒3A−4B=0⇒3(1−B)−4B=0⇒3−3B−4B=07B=3⇒B=37
If B=37, then ,A+37=1⇒A=1−37=47∴I=47∫1x2−(2)2dx+37∫1x2+(√3)2dx=47.12.2log|x−2x+2|+37.1√3tan−1x√3+C=17log|x−2x+2|+√37tan−1x√3+C