I=
∫xx2+x+1dx=∫12(2x+1)−12x2+x+1dx=12∫2x+1x2+x+1dx(i1)−12∫1x2+x+1dx(i2)+C
i1 can be read as 12∫dtt for t=x2+x+1
so i1=12ln|x2+x+1|+c
i2 can simply be evaluated by making perfect square in denominator
i2=12∫1(x+12)2+34=1√3tan−1(x+12√32)+c
So I=i1−i2= 12ln|x2+x+1|−1√3tan−1(x+12√32)+C