We can see that:
exϵ(1,2) for xϵ(0,loge2) (as eloge2=2)
⇒2exϵ(1,2) for xϵ(0,loge2)
⇒[2ex]=1 for
xϵ(0,loge2)
Similarly,
exϵ(2,∞) for xϵ(loge2,∞)
⇒2exϵ(0,1) for xϵ(loge2,∞)
⇒[2ex]=0 for xϵ(loge2,∞)
Now,
∫∞0[2ex]dx=∫loge20[2ex]dx+∫∞loge2[2ex]dx
=∫loge201.dx+∫∞loge20.dx
=∫loge201.dx
=[x]loge20
=loge2.
Hence, Option A is correct.