wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(5x+3)2x1dx

Open in App
Solution

Let I=(5x+3)2x1dx

Let 5x+3=λ(2x1)+μ
Comparing the coefficients, we get

2λ=5λ=52
λ+μ=352+μ=3
μ=3+52=6+52=112
=(λ(2x1)+μ)2x1dx
=(52(2x1)+112)2x1dx

I=(5x+3)2x1dx
=52(2x1)1+12dx+112(2x1)12dx
=52(2x1)32dx+112(2x1)12dx

=52(2x1)32+12(32+1)+112(2x1)12+12(12+1)+c
=52(2x1)522(52)+112(2x1)322(32)+c
=52(2x1)525+112(2x1)323+c
=12(2x1)52+116(2x1)32+c

=16(2x1)32[3(2x1)+11]+c
=16(2x1)32[6x3+11]+c
=16(2x1)32[6x+8]+c
=16(2x1)32[2(3x+4)]+c
=26(2x1)32(3x+4)+c
=13(2x1)32(3x+4)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon