The correct option is
C √2Sin−1(sinx−cosx)+cSolution-
∫√tanx+√cotxdx=∫√sinx√cosx+√cosx√sinxdx
∫sinx+cosx√sinxcosxdx=√2∫sinx+cosx√2sinxcosxdx
=√2∫sinx+cosx√2sinxcosx+1−1dx=√2∫sinx+cosx√1−(sinx−cosx)2dx
put sinx−cosx=t (sinx+cosx)=dt
=√2∫dt√1−t2=√2sin−1t+c
=√2sin−1(sinx−cosx)+c
D is correct.