The correct option is A 1√2tan−1(√23)
Let I=1/2∫0dx(1+x2)√1−x2
Put x=tanθ⇒dx=sec2θ dθ
Then, I=tan−11/2∫0dθ√1−tan2θ
=tan−11/2∫0cosθ dθ√cos2θ−sin2θ=tan−11/2∫0cosθ dθ√1−2sin2θ
Now, put sinθ=t⇒cosθ dθ=dt
When θ=0, then t=0
When θ=tan−11/2, then t=sin(tan−11/2)
Then, I=sin(tan−11/2)∫01√2dt√12−t2
=1√2[sin−1√2t]t=sin(tan−11/2)t=0
=1√2 sin−1√2sin(tan−11/2)
=1√2sin−1√25
=1√2tan−1√23