Let x=tanθ⟹θ=tan−1x⟹sin−12x1+x2=sin−12tanθ1+tan2θ=sin−1(sin2θ) using (1)=2θ=2tan−1x Now the integral becomes fairly simple I=2∫01tan−1x⋅1dx Integrating by parts ∫u⋅vdx=u∫vdx−∫(dudx⋅∫vdx)dx
Taking v=1&u=tan−1x⟹I=x⋅tan−1x|10−ln∣∣1+x2∣∣2∣∣∣10
⟹I=π4−ln22