The correct option is
B π2−1∫10√1−x√1+xdx
=∫10√1−x×√1−x√1+x×√1−xdx
=∫10(1−x)√1−x2dx
=∫10dx√1−x2−∫10xdx√1−x2
=∫10dx√1−x2+12∫10−2xdx√1−x2
=[sin−1x]10+12∫10−2xdx√1−x2
Let t=1−x2⇒dt=−2xdx
=[sin−1x]10+12∫10dt√t
=[sin−1x]10+12∫10t−12dt
=[sin−1x]10+12⎡⎢
⎢
⎢⎣t−12+1−12+1⎤⎥
⎥
⎥⎦10
=[sin−1x]10+[√t]10
=[sin−1x]10+[√1−x2]10 where t=1−x2
=sin−11−sin−10+√1−1−√1−0
=π2−0−0−1
=π2−1