wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

10x2sin1xdx

Open in App
Solution

Consider the given integral.

I=10x2sin1xdx

We know that

uvdx=uvdx(ddx(u)vdx)dx

Therefore,

I=[sin1x(x33)]1010(11x2×(x32))dx

I=[sin1(1)(133)sin1(0)(033)]1210(x31x2)dx

I=[13sin1(sinπ2)0]1210(x31x2)dx

I=π61210(x31x2)dx

Let t=1x2

dtdx=02x

dt2=xdx

Therefore,

I=π61201((1t)t)(dt2)

I=π6+1401((1t)t)dt

I=π6+14011tdt1401tdt

I=π6+14(2t)0114⎜ ⎜ ⎜t3232⎟ ⎟ ⎟01

I=π6+14(2021)14(23(032132))

I=π6+14(2)14(23)

I=π612+16

I=π3+16

I=π26

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon