Consider the given integral.
I=∫10x2sin−1xdx
We know that
∫uvdx=u∫vdx−∫(ddx(u)∫vdx)dx
Therefore,
I=[sin−1x(x33)]10−∫10(1√1−x2×(x32))dx
I=[sin−1(1)(133)−sin−1(0)(033)]−12∫10(x3√1−x2)dx
I=[13sin−1(sinπ2)−0]−12∫10(x3√1−x2)dx
I=π6−12∫10(x3√1−x2)dx
Let t=1−x2
dtdx=0−2x
−dt2=xdx
Therefore,
I=π6−12∫01((1−t)√t)(−dt2)
I=π6+14∫01((1−t)√t)dt
I=π6+14∫011√tdt−14∫01√tdt
I=π6+14(2√t)01−14⎛⎜ ⎜ ⎜⎝t3232⎞⎟ ⎟ ⎟⎠01
I=π6+14(2√0−2√1)−14(23(032−132))
I=π6+14(−2)−14(−23)
I=π6−12+16
I=π−3+16
I=π−26
Hence, this is the answer.