I=∫π/20cosx1+cosx+sinx
=∫π/20cos2x/2−sin2x/22cos2x/2+2sinx/2cosx/2dx
=∫π/20(cos2x/2−sin2x/2)2cosx/2(cosx/2+sinx/2)dx
=∫π/20(cosx/2−sinx/2)(cosx/2+sinx/2)2cosx/2(cosx/2+sinx/2)dx
=∫π/20(cosx/2−sinx/2)2cosx/2dx
=12∫π/20dx−12∫π/20tanx2dx
=[12x−12logsecx2.2]π/20
=[x2−logsecx2]π/20
=12[π2−log2]