The correct option is
B −log(2)+1∫ππ21−sinx1−cosx.dx=∫ππ21−2sinx2.cosx22sin2x2.dx[∵sin2x=2sinx.cosx,cos2x=1−2sin2x]
=∫ππ2(12cosec2x2−cotx2).dx
=2.12[−cotz]π4π4−2[log|sinx|]π2π4=[−(0−1)]−2[log1−log(1√2)]
=1−2[0+log√2][∵log(1/x)=−logx,log(xn)=nlogx]
=1−2.12.log2=−log2+1