The correct option is
B 3x8−14sin2x+132sin4x∫sin4xdx
=∫(sin2x)2dx
=14∫(2sin2x)2dx
=14∫(1−cos2x)2dx (∴cos2x=2cos2x−1)
=14∫(1+cos22x−2cos2x)dx
=14∫(1−2cos2x)dx+14∫cos22xdx
=14∫(1−2cos2x)dx+18∫2cos22xdx
=14[x−sin2x]+18∫(1+cos4x)dx
=14[x−sin2x]+18∫(x+sin4x4)dx+c
=x4−14sin2x+x8+132sin4x+c
=3x8−14sin2x+132sin4x+c