The correct option is
B −sin4xcosx5−415sin2xcosx−815cosx+c∫sin5xdx
=∫sin4xsinxdx
=∫(sin2x)2sinxdx
=∫(1−cos2x)2sinxdx
putting cosx=t
⇒sinxdx=−dt
=−∫(1−t2)2dt
=−∫(1+t4−2t2)dt
=−[t+t55−2t33]+c
=−[cosx+cos5x5−23cos3x]+c
=23cos3x−cos5x5−cosx+c
=115[10cos3x−3cos5x−15cosx]+c
=115[cos3x(10−3cos2x)−15cosx]+c
=115[cos2x(10−3cos2x)cosx−15cosx]+c
=115[(1−sin2x)(10−3cos2x)−15]cosx+c
=115[(1−sin2x)(10−3+3sin2x)−15]cosx+c
=115[(1−sin2x)(7+3sin2x)−15]cosx+c
=115[7−4sin2x−3sin4x−15]cosx+c
=115[−8−4sin2x−3sin4x]cosx+c
=−sin4xcosx5−415sin2xcosx−815cosx+c