Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−tanθ∫cosθsinθf(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinθ∫tanθ0f(xcosθ)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cotθ∫sinθtanθsinθf(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−cosθ∫tanθ1f(xsinθ)dx Letxcosθ=t⇒dx=(cosθ)dt ∫cosθsinθf(xtanθ)dx =∫1tanθf(tsinθ)cosθdt=−cosθ∫tanθ1f(tsinθ)dt Put t=x then we get, =−cosθ∫tanθ1f(xsinθ)dx