Integrate ∫sin2x1-cosxdx.
Compute the given integration.
In the question, an integration ∫sin2x1-cosxdx is given.
Assume that, I=∫sin2x1-cosxdx.
I=∫sin2x1-cosxdx∵sin2x+cos2x=1⇒I=∫1-cos2x1-cosxdx∵1-cos2x=1-cosx1+cosx⇒I=∫1+cosxdx⇒I=∫dx+∫cosxdx∵∫cosxdx=sinx,∫dx=x⇒I=x+sinx+C
Hence ∫sin2x1-cosxdx=x+sinx+C.