The correct option is
A −23sin−1[(cosx)3/2]+c
∫
⎷cosx−cos3x1−cos3x dx
=∫
⎷cosx(1−cos2x)1−cos3x dx
=∫√cosx1−cos3x sinx dx
Let, cosx=z then −sinx dx=dz
Using this in the above integration we get,
=−∫√z1−z3 dz
=−∫√z√1−z3 dz
=−23∫32√z√1−(z32)2 dz
=−23∫d(z32)√1−(z32)2
=−23sin−1(z32) +c
=−23sin−1[(cosx)32] +c