The correct option is C −2ℓn(cosx2+√cos2x2−12)+C
Accordingtoquestion........................I=√secx−1dx⇒∫√1cosx−1dx⇒∫√1−cosxcosxdx∣∣
∣
∣
∣
∣∣weknowthat:cosx=2cos2x2−1cosx=1−2sin2x2⇒1−cosx=2sin2x2I=∫√2sin2x2√2cos2x2−1dx=∫√2sinx2√2cos2x2−1dx∣∣
∣
∣
∣∣let:√2cosx2=t⇒√2−sinx2.12dx=dt,sinx2dx=−√2dtI=∫√2.−√2dt√t2−1⇒−2∫dt√t2−1⇒−2[log(√t2−1+t]+c⇒−2[log(√2cos2x2−1+√2cosx2)]+c⇒−2[log(√2(√cos2x2−12+cosx2)]+c⇒−2[log(√2(√cos2x2−12+cosx2)]+c⇒−2log√2−2log[cosx2+√cos2x2−12]+c∣∣constant(−2log√2)=c1I=−2log[cosx2+√cos2x2−12]+c+c1|constant(c+c1)=CI=−2log[cosx2+√cos2x2−12]+CSo,thatthecorrectoptionisC.