wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

secx1dx is equal to

A
2n(cosx2+cos2x212)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n(cosx2+cos2x212)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2n(cosx2+cos2x212)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2n(cosx2+cos2x212)+C
Accordingtoquestion........................I=secx1dx1cosx1dx1cosxcosxdx∣ ∣ ∣ ∣ ∣weknowthat:cosx=2cos2x21cosx=12sin2x21cosx=2sin2x2I=2sin2x22cos2x21dx=2sinx22cos2x21dx∣ ∣ ∣ ∣let:2cosx2=t2sinx2.12dx=dt,sinx2dx=2dtI=2.2dtt212dtt212[log(t21+t]+c2[log(2cos2x21+2cosx2)]+c2[log(2(cos2x212+cosx2)]+c2[log(2(cos2x212+cosx2)]+c2log22log[cosx2+cos2x212]+cconstant(2log2)=c1I=2log[cosx2+cos2x212]+c+c1|constant(c+c1)=CI=2log[cosx2+cos2x212]+CSo,thatthecorrectoptionisC.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon