1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Substitution
∫ tan - 1 x +...
Question
∫
t
a
n
−
1
(
x
+
1
)
+
C
d
x
Open in App
Solution
I
1
=
∫
tan
−
1
(
x
+
1
)
+
C
p
u
t
(
x
+
1
)
=
t
d
x
=
d
t
I
1
=
∫
1.
tan
−
1
(
t
)
d
t
=
t
.
tan
−
1
−
∫
t
1
+
t
2
d
t
=
t
.
tan
−
1
(
t
)
−
1
2
log
(
1
+
t
2
)
+
C
=
(
x
+
1
)
tan
−
1
(
x
+
1
)
−
1
2
log
[
1
+
(
1
+
x
)
2
]
+
C
Suggest Corrections
0
Similar questions
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
t
a
n
−
1
1
4
+
2
t
a
n
−
1
1
5
+
t
a
n
−
1
1
6
+
t
a
n
−
1
1
x
=
π
4
(b)
t
a
n
−
1
(
x
−
1
)
+
t
a
n
−
1
x
+
t
a
n
−
1
(
x
+
1
)
=
t
a
n
−
1
3
x
Q.
Solve the following equations for
x
:
(i) tan
−1
2x + tan
−1
3x = nπ +
3
π
4
(ii) tan
−1
(x + 1) + tan
−1
(x − 1) = tan
−1
8
31
(iii) tan
−1
(
x
−1) + tan
−1
x
tan
−1
(
x
+ 1) = tan
−1
3
x
(iv)
tan
−1
1
-
x
1
+
x
-
1
2
tan
−1
x
= 0, where
x
> 0
(v) cot
−1
x
− cot
−1
(
x
+ 2) =
π
12
,
x
> 0
(vi) tan
−1
(
x
+ 2) + tan
−1
(
x
− 2) = tan
−1
8
79
,
x
> 0
(vii)
tan
-
1
x
2
+
tan
-
1
x
3
=
π
4
,
0
<
x
<
6
(viii)
tan
-
1
x
-
2
x
-
4
+
tan
-
1
x
+
2
x
+
4
=
π
4
(ix)
tan
-
1
2
+
x
+
tan
-
1
2
-
x
=
tan
-
1
2
3
,
where
x
<
-
3
or
,
x
>
3
(x)
tan
-
1
x
-
2
x
-
1
+
tan
-
1
x
+
2
x
+
1
=
π
4
Q.
Solve for x:
tan
−
1
(
x
−
1
)
+
tan
−
1
x
+
tan
−
1
(
x
+
1
)
=
tan
−
1
3
x
.
Q.
Diffferentiate
tan
−
1
x
1
+
tan
−
1
x
w.r.t.
tan
−
1
x
.
Q.
Solution of the equation
tan
-1
(x - 1) + tan
-1
x + tan
-1
(x+1)
=
tan
-1
3x is