Given that
I=∫tan32xsec2xdx
We know that
sec2x=1+tan2x
Therefore,
I=∫tan2x(sec22x−1)sec2xdx
I=∫tan2xsec2x(sec22x−1)dx
Let t=sec2x
dtdx=2sec2xtan2x
dt2=sec2xtan2xdx
Therefore,
I=12∫(t2−1)dt
I=12(t33−t)+C
On putting the value of t, we get
I=12(sec32x3−sec2x)+C
I=sec32x6−sec2x2+C
Hence, this is the answer.