The correct option is
D tanx−cotx−4x+CI=∫(tanx−cotx)2dx=∫(tan2x−1)2tan2xdx=∫tan4x+1−2tan2xtan2xdx=∫tan2xdx+∫cot2xdx−2∫dx=∫[(tan2x+1)−1]dx+∫cos2xsin2xdx−2x+C
=∫sec2xdx−∫dx+∫1−sin2xsin2xdx−2x+C
=tanx−x+∫cosec2xdx−∫dx−2x+C=tanx−4x+∫cosec2xdx+C=tanx−4x−cotx+C
I=tanx−cotx−4x+C