Evaluate :∫0π2xSinxcosxcos4x+sin4xdx
π24
π28
π216
π232
Evaluate the given integral :
Step 1: Re-expressing the integral
Let the integral be : I=∫0π2xSinxcosxcos4x+sin4xdx→(i)
substitute : x=0+π2-x in equation (1)
I=∫0π20+π2-xSin0+π2-xcos0+π2-xcos40+π2-x+sin40+π2-xdx=∫0π2π2-xcosxSinxsin4x+cos4xdx→(ii)∵sinπ2-x=cosx,cosπ2-x=sinx
Step 2: Add (i) and (ii)
2I=∫0π2xSinxcosxcos4x+sin4xdx+∫0π2π2-xcosxSinxsin4x+cos4xdx=∫0π2π2Sinxcosxcos4x+sin4xdx=π2∫0π2Sinxcosxcos2x+sin2x2-2cos2xsin2xdx∵(a2+b2)=(a+b)2-2ab=π2∫0π2Sinxcosx1-21-sin2xsin2xdx∵sin2x+cos2x=1
Substitute t=sin2x
∴dt=2sinxcosx
finding the Limits
x=0⇒t=sin2(0)=0x=π2⇒t=sin2(π2)=1
2I=π2∫0112dt1-2t1-t=π4∫01dt2t2-2t+1=π8∫01dtt2-t+12+14-14addandsubtract14indenominator=π8∫01dtt-122+122∵(a2+b2)=(a+b)2-2ab=π8tan-1t-121201∵∫dx1+x2=tan-1x=π8tan-12t-101=π8tan-12.1-1-tan-12.0-1=π8tan-1(1)-tan-1-1=π8π4-π4=π216I=π216
Hence, option (D) is the correct answer.