Evaluate : ∫0π1+4sin2x/2-4sinx/2dx
π-4
2π/3-4-43
43-4
43-4-π/3
Step 1: Simplify the Equation :
I=∫0π1+4sin2x2-4sinx2dx
I=∫0π1+4sin2x2-4sinx2dxI=∫0π12+2sinx22-2×1×2sinx2dxI=∫0π1-2sinx22dxI=1-2sinx2dx
Step 2 : Find the value of x:
sinx2=12x2=π6x=π3
Integrate the I with respect to the limit 0 toπ3to π.
I=∫0π31-2sinx2dx+∫π3π2sinx2-1dxI=x+4cosx2+-4cosx2-xπ3πI=x3+4cosπ6-0+4cos0+-4cosπ2-π--4cosπ6I=π3+4×32-4+-π+432+π3I=π3+4×32-4-π+432+π3I=43-4-π3
Therefore, the correct answer is Option D.