∫π4π2cosec2xdx=
-1
1
0
12
Explanation for the correct option:
Finding the value of the given integral:
Let I=∫π4π2cosec2xdx
=-cotxπ4π2since∫cosec2xdx=-cotx+c=-cotπ2-cotπ4=-0-1=1
Thus, option (B) is the correct answer.
Arrange 12,13,34, 56 in ascending order.
Integrate ∫-π4π4logsinx+cosxdx.
Evaluate the value of following:-
111+411+311+211
Solve it :-
a-235=-412
Evaluate the value of following :-
25-65+75