∫-ππ2x1+sinx1+cos2xdx=
π24
π2
zero
Explanation for the correct option:
Finding the value of the given integral:
LetI=∫-ππ2x1+sinx1+cos2xdx=∫-ππ2x1+cos2xdx+∫-ππ2xsinx1+cos2xdxI=I1+I2
Take I1=∫-ππ2x1+cos2xdx
⇒fx=2x1+cos2x⇒f-x=2-x1+cos2π-x=-2x1+-cosx2=-2x1+cos2x=-fx⇒I1=∫-ππ2x1+cos2xdx=0(sincef(x)isanoddfunction)
Againconsider⇒gx=2xsinx1+cos2x⇒g-x=2-xsin-x1+cos2-x=2xsinx1+cos2xsincesin-x=-sinx,cos-x=cosx=gx⇒I2=∫-ππ2xsinx1+cos2xdx=2×2∫0πxsinx1+cos2xdx=4∫0πxsinx1+cos2xdx.............(1)sinceg(x)isanevenfunctionThen,⇒I2=4∫0ππ-xsinπ-x1+cos2π-xdx=4∫0ππ-xsinx1+cos2xdx..........(2)∫0afxdx=∫0afa-xdx
Adding 1and 2, we get
⇒2I2=4π∫0πsinx1+cos2xdx
Substitute cosx=z
-sinxdx=dz
when x→0,z→1 and
when x→π,z→-1
⇒2I2=-4π∫1-1dz1+z2⇒2I2=-4πtan-1z1-1⇒2I2=-4π-π4-π4⇒2I2=2π2⇒I2=π2
⇒I=I1+I2=0+π2=π2
Hence, Option (B) is the correct answer
A circle of radius 2cm is cut out from a square piece of an aluminium sheet of side 6cm. What is the area of the left over aluminium sheet?(Takeπ=3.14)
The general solution of a differential equation of the type dxdy+P1x=Q1 is
(a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C
(b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C
(c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C
(d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C
If ∫fxdx=ψx, then ∫x5fx3dx=