wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

-ππ2x1+sinx1+cos2xdx=


A

π24

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

π2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

zero

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

π2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

π2


Explanation for the correct option:

Finding the value of the given integral:

LetI=-ππ2x1+sinx1+cos2xdx=-ππ2x1+cos2xdx+-ππ2xsinx1+cos2xdxI=I1+I2

Take I1=-ππ2x1+cos2xdx

fx=2x1+cos2xf-x=2-x1+cos2π-x=-2x1+-cosx2=-2x1+cos2x=-fxI1=-ππ2x1+cos2xdx=0(sincef(x)isanoddfunction)

Againconsidergx=2xsinx1+cos2xg-x=2-xsin-x1+cos2-x=2xsinx1+cos2xsincesin-x=-sinx,cos-x=cosx=gxI2=-ππ2xsinx1+cos2xdx=2×20πxsinx1+cos2xdx=40πxsinx1+cos2xdx.............(1)sinceg(x)isanevenfunctionThen,I2=40ππ-xsinπ-x1+cos2π-xdx=40ππ-xsinx1+cos2xdx..........(2)0afxdx=0afa-xdx

Adding 1and 2, we get

2I2=4π0πsinx1+cos2xdx

Substitute cosx=z

-sinxdx=dz

when x0,z1 and

when xπ,z-1

2I2=-4π1-1dz1+z22I2=-4πtan-1z1-12I2=-4π-π4-π42I2=2π2I2=π2

I=I1+I2=0+π2=π2

Hence, Option (B) is the correct answer


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon