∫-ππcospx-sinqx2dx where p and q are integers, then the value of integral is
-π
0
π
2π
Explanation for the correct option:
Finding the value for the given integral:
Let I=∫-ππcospx-sinqx2dx........(1)
I=∫-ππcosp-x-sinq-x2dxsince∫abfxdx=∫abfa+b-xdxI=∫-ππcospx+sinqx2dx..........(2)
On adding 1 and 2, we get
⇒2I=∫-ππcospx-sinqx2dx+∫-ππcospx+sinqx2dx=∫-ππ2cosp2x+sinq2xdx=2∫-ππcos2px+12+1-cos2qx2dxsincecos2px=2cos2x-1,cos2qx=1-2sin2x=2∫-ππ1+cos2px2-cos2qx2dx=2x+sin2px4-sin2qx4-ππ=2×π+sin2pπ4-sin2qπ4--π+sin2p-π4-sin2q-π4⇒2I=2×2π⇒I=2π
Thus, option (D) is the correct answer.
A circle of radius 2cm is cut out from a square piece of an aluminium sheet of side 6cm. What is the area of the left over aluminium sheet?(Takeπ=3.14)