∫1+x-1xex+1xdx=
(x-1)ex+1x+C
xex+1x+C
(x+1)ex+1x+C
(-x)ex+1x+C
Explanation for the correct answer:
Finding the value for the given integral:
∫1+x-1xex+1xdx=∫1+x1-1x2ex+1xdx=∫ex+1x+x1-1x2ex+1xdxUsingintegrationbyparts,u=x,v=1-1x2ex+1x∫udv=uv-∫vduIntegrating∫ex+1x.1-1x2dx=∫ex+1xdx+1x=∫ex+1x=∫ex+1x+xex+1x-∫ex+1xdxdx=∫ex+1x+xex+1x-∫ex+1xdx+C=xex+1x+C
Hence, option (B) is the correct answer.
Find the area bounded by the curve y=xx,x-axis and the ordinates x=1,x=-1.
Determine whether the following numbers are in proportion or not:
13,14,16,17